2,014 research outputs found

    DNA binding shifts the redox potential of the transcription factor SoxR

    Get PDF
    Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR–DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property

    Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [Fe_4S_4] Site in EndoIII and MutY

    Get PDF
    S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe_4S_4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe–S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron–thiolate and iron–sulfide bonds would stabilize the oxidized state of the [Fe_4S_4] clusters. The results are compared to those on previously studied [Fe_4S_4] model complexes, ferredoxin (Fd), and to new data on high-potential iron–sulfur protein (HiPIP). A limited decrease in covalency is observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe_4S_4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron–sulfur bonds. In EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior

    Low Blood Lead Levels Do Not Appear to Be Further Reduced by Dietary Supplements

    Get PDF
    OBJECTIVE: Our objective was to evaluate the association of dietary intakes of selected micronutrients and blood lead (PbB) concentrations in female adults and in children. DESIGN: With longitudinal monitoring, we measured daily intakes of the micronutrients calcium, magnesium, sodium, potassium, barium, strontium, phosphorus, zinc, iron (limited data), and copper from 6-day duplicate diets (2–13 collections per individual) and PbB concentrations. Participants were three groups of females of child-bearing age (one cohort consisting of 21 pregnant subjects and 15 nonpregnant controls, a second cohort of nine pregnant migrants), and one group of 10 children 6–11 years of age. RESULTS: Mean PbB concentrations were < 5 μg/dL. A mixed linear model that included only group and time accounted for 5.9% of the variance of the PbB measurements; neither the effect of time nor the effect of group was significant. The model containing all of the micronutrients (except iron, for which there was a great deal of missing data), along with time and group, accounted for approximately 9.2% of the variance of PbB; this increase was not statistically significant. There was, however, a significant association of PbB with phosphorus, magnesium, and copper when all micronutrients were included in the statistical analysis, perhaps reflecting a synergistic effect. CONCLUSIONS: In contrast to most previous studies, we found no statistically significant relationships between the PbB concentrations and micronutrient intake. In adults and older children with low PbB concentrations and minimal exposure to Pb, micronutrient supplementation is probably unnecessary

    Teaching Robust Argumentation Informed by the Nature of Science to Support Social Justice. Experiences from Two Projects in Lower Secondary Schools in Norway

    Get PDF
    Under embargo until: 2022-09-09This chapter suggests a set of design principles for science curricula that will enable students to produce evidence-based arguments expressing views related to their own interests. It is based on the assumption that the ability to construct evidence-based arguments strengthens students’ ability to promote their own views in the interest of social justice. This is of special importance for students not enculturated into such argumentation through their upbringing. To promote one’s own views in a debate means to critique others’ arguments, and especially to ensure one’s own arguments are resistent to criticism. Insight into the nature of science includes insights in how to construct sound arguments based on facts and research results. The discussion of design principles is based on an analysis of two science projects in two lower secondary schools in Norway (Grade 8). In the first project, students produced scientific claims based on evidence from their own practical experiments. In the second project, the students developed and applied a method for estimating energy use and carbon dioxide (CO2) emissions. The students used their findings to construct arguments related to local transport plans. The analysis focuses on challenges and successes in scaffolding students at different competence levels to successfully produce evidence-based arguments.acceptedVersio

    Trends in qualitative research in language teaching since 2000

    Get PDF
    This paper reviews developments in qualitative research in language teaching since the year 2000, focusing on its contributions to the field and identifying issues that emerge. Its aims are to identify those areas in language teaching where qualitative research has the greatest potential and indicate what needs to be done to further improve the quality of its contribution. The paper begins by highlighting current trends and debates in the general area of qualitative research and offering a working definition of the term. At its core is an overview of developments in the new millennium based on the analysis of papers published in 15 journals related to the field of language teaching and a more detailed description, drawn from a range of sources, of exemplary contributions during that period. Issues of quality are also considered, using illustrative cases to point to aspects of published research that deserve closer attention in future work, and key publications on qualitative research practice are reviewed

    The `Friction' of Vacuum, and other Fluctuation-Induced Forces

    Full text link
    The static Casimir effect describes an attractive force between two conducting plates, due to quantum fluctuations of the electromagnetic (EM) field in the intervening space. {\it Thermal fluctuations} of correlated fluids (such as critical mixtures, super-fluids, liquid crystals, or electrolytes) are also modified by the boundaries, resulting in finite-size corrections at criticality, and additional forces that effect wetting and layering phenomena. Modified fluctuations of the EM field can also account for the `van der Waals' interaction between conducting spheres, and have analogs in the fluctuation--induced interactions between inclusions on a membrane. We employ a path integral formalism to study these phenomena for boundaries of arbitrary shape. This allows us to examine the many unexpected phenomena of the dynamic Casimir effect due to moving boundaries. With the inclusion of quantum fluctuations, the EM vacuum behaves essentially as a complex fluid, and modifies the motion of objects through it. In particular, from the mechanical response function of the EM vacuum, we extract a plethora of interesting results, the most notable being: (i) The effective mass of a plate depends on its shape, and becomes anisotropic. (ii) There is dissipation and damping of the motion, again dependent upon shape and direction of motion, due to emission of photons. (iii) There is a continuous spectrum of resonant cavity modes that can be excited by the motion of the (neutral) boundaries.Comment: RevTex, 2 ps figures included. The presentation is completely revised, and new sections are adde

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker&#x27;s yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker&#x27;s yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    Distributions of epistasis in microbes fit predictions from a fitness landscape model.

    Get PDF
    How do the fitness effects of several mutations combine? Despite its simplicity, this question is central to the understanding of multilocus evolution. Epistasis (the interaction between alleles at different loci), especially epistasis for fitness traits such as reproduction and survival, influences evolutionary predictions "almost whenever multilocus genetics matters". Yet very few models have sought to predict epistasis, and none has been empirically tested. Here we show that the distribution of epistasis can be predicted from the distribution of single mutation effects, based on a simple fitness landscape model. We show that this prediction closely matches the empirical measures of epistasis that have been obtained for Escherichia coli and the RNA virus vesicular stomatitis virus. Our results suggest that a simple fitness landscape model may be sufficient to quantitatively capture the complex nature of gene interactions. This model may offer a simple and widely applicable alternative to complex metabolic network models, in particular for making evolutionary predictions

    Tipping points in the dynamics of speciation.

    Get PDF
    Speciation can be gradual or sudden and involve few or many genetic changes. Inferring the processes generating such patterns is difficult, and may require consideration of emergent and non-linear properties of speciation, such as when small changes at tipping points have large effects on differentiation. Tipping points involve positive feedback and indirect selection stemming from associations between genomic regions, bi-stability due to effects of initial conditions and evolutionary history, and dependence on modularity of system components. These features are associated with sudden 'regime shifts' in other cellular, ecological, and societal systems. Thus, tools used to understand other complex systems could be fruitfully applied in speciation research
    corecore